具体来说,有如下原因使得事务处理环境不适宜DSS应用: - 事务处理和分析处理的性能特性不同:在事务处理环境中,用户的行为特点是数据的存取操作频率高而每次操作处理的时间短,因此,系统可以允许多个用户按分时方式使用系统资源,同时保持较短的响应时间,OLTP(联机事务处理)是这种环境下的典型应用。在分析处理环境中,某个DSS应用程序可能需要连续运行几个小时,从而消耗大量的系统资源。将具有如此不同处理性能的两种应用放在同一个环境中运行显然是不适当的。 - 数据集成问题:DSS需要集成的数据。全面而正确的数据是有效的分析和决策的首要前提,相关数据收集得越完整,得到的结果就越可靠。因此,DSS不仅需要整个企业内部各部门的相关数据,还需要企业外部、竞争对手等处的相关数据。而事务处理的目的在于使业务处理自动化,一般只需要与本部门业务有关的当前数据,对整个企业范围内的集成应用考虑很少。当前绝大部分企业内数据的真正状况是分散而非集成的,这些数据不能成为一个统一的整体。对于需要集成数据的DSS应用来说,必须自己在应用程序中对这些纷杂的数据进行集成。可是,数据集成是一项十分繁杂的工作,都交给应用程序完成会大大增加程序员的负担。并且,如果每做一次分析,都要进行一次这样的集成,将会导致极低的处理效率。DSS对数据集成的迫切需要可能是数据仓库技术出现的最重要动因。 - 数据动态集成问题:由于每次分析都进行数据集成的开销太大,一些应用仅在开始对所需的数据进行了集成,以后就一直以这部分集成的数据作为分析的基础,不再与数据源发生联系,我们称这种方式的集成为静态集成。静态集成的最大缺点在于如果在数据集成后数据源中数据发生了改变,这些变化将不能反映给决策者,导致决策者使用的是过时的数据。对于决策者来说,虽然并不要求随时准确地探知系统内的任何数据变化,但也不希望他所分析的是几个月以前的情况。因此,集成数据必须以一定的周期(例如24小时)进行刷新,我们称其为动态集成。显然,事务处理系统不具备动态集成的能力。 - 历史数据问题:事务处理一般只需要当前数据,在数据库中一般也只存储短期数据。但对于决策分析而言,历史数据是相当重要的,许多分析方法必须以大量的历史数据为依托。没有对历史数据的详细分析,是难以把握企业的发展趋势的。 - 数据的综合问题:在事务处理系统中积累了大量的细节数据,一般而言,DSS并不对这些细节数据进行分析,在分析前,往往需要对细节数据进行不同程度的综合。而事务处理系统不具备这种综合能力,根据规范化理论,这种综合还往往因为是一种数据冗余而加以限制。 |