(1)正常情况下的值a = 0, g = 1,分别将正常值和故障值代入布尔函数f (a,b,c,d,g )中,得
f (a = 0, g = 1) = 0·d·1+b·d·1 = b·d
f (a = 1, g = 0) = 1·d·0+b·d·0 = 0
测试输入应满足
f (a = 0, g = 1) f
(a = 1, g = 0)=b·d 0
= b·d
a = 0,
g=a·b+c
即要求:
a·g·[f(a = 0,g = 1) f(a
= 1,g = 0)] =a·(ab+c)·bd
= abcd = 1
而得到测试向量为(a, b, c, d) = (0, 1, 0, 1)。
类似于单故障情况,我们把f(a = 0, g = 1) f
(a = 1, g = 0)定义为二阶布尔差分:
= f(a = 0, g = 1) f
(a = 1, g = 0)
这样,上述测试输入的条件可以描述为

(2)正常情况下的值a = 0, g = 0。这时,a的值与故障值不同,而g的值与其故障值相同。先不考虑g,只要考虑关于a的一阶布尔差分,即其测试向量应满足

而

所以这种情况下没有测试向量。
|