4.3 正规文法,正规式和有穷自动机 在第三章,我们介绍了正规式和有穷自动机(FA), 正规式定义的是正规集,有穷自动机接受的也是正规集,我们已讨论了正规式和有穷自动机(FA)的等价性,现在我们讨论正规(3型)文法和它们的等价性。 4.3.1 3型文法和相应识别系统FA 根据形式语言理论, 3型文法(正规文法)产生的语言是有穷自动机(FA)所接受的集合.可以给出3型文法和相应识别系统FA间的转换规则. 采用下面的规则可从正规文法G(假定G为右线性文法)直接构造一个有穷自动机NFA M;使得L(M)=L(G): · 字母表与G的终结符集相同; · 为G中的每个非终结符生成M的一个状态,(不妨取成相同的名字)G的开始符号S是开始状态S; · 增加一个新状态Z,做为NFA的终态; · 对G中的形如 A→tB其中t为终结符或ε,A和B为非终结符的产生式,构造M的一个转换函数f(A,t)=B; · 对G中形如A→t的产生式,构造M的一个转换函数f(A,t)=Z。 |