设G=(VN,VT,P,S),如果它的每个产生式α→β是这样一种结构:α∈(
VN∪VT
)*且至少含有一个非终结符,而β∈( VN∪VT
)*,则G是一个0型文法。 0型文法也称短语文法。一个非常重要的理论结果是,0型文法的能力相当于图灵机(Turing)。或者说,任何0型语言都是递归可枚举的;反之,递归可枚举集必定是一个0型语言。 对0型文法产生式的形式作某些限制,以给出1,2和3型文法的定义。 设G=(VN,VT,P,S)为一文法,若P中的每一个产生式α→β均满足|β|≥|α| ,仅仅S→ε除外,则文法G是1型或上下文有关的。 例4.3的文法是上下文有关的。同样例4.1,例4.2的文法也都是上下文有关的。 在有些文献给的定义中,将上下文有关文法的产生式的形式描述为α1Aα2→α1βα2,其中α1、α2和β都在( VN∪VT )*中(即在V*中),β≠ε,A在VN中。这种定义与前边的定义等价。但它更能体现"上下文有关"这一术语,因为只有A出现在α1和α2的上下文中,才允许用β取代A。 设G=(VN,VT,P,S),若P中的每一个产生式α→β满足:α是一非终结符,β∈( VN∪VT )*则此文法称为2型的或上下文无关的。有时将2型文法的产生式表示为形如:A→β其中A∈VN,也就是说用β取代非终结符A时,与A所在的上下文无关,因此取名为上下文无关文法。 例4.1和例4.2中的文法都是上下文无关的,下面我们再给出一个例子(例4.4),例中的文法G是上下文无关文法,G的语言是由相同个数的a和b所组成的{a,b}*上的串。 设G=(VN,VT,P,S),若P中的每一个产生式的形式都是A→aB或A→a,其中A和B都是非终结符,a是终结符,则G是3型文法或正规文法。 |